3.3.54 \(\int \frac {c+\frac {d}{x}}{(a+\frac {b}{x})^{3/2}} \, dx\) [254]

Optimal. Leaf size=76 \[ \frac {3 b c-2 a d}{a^2 \sqrt {a+\frac {b}{x}}}+\frac {c x}{a \sqrt {a+\frac {b}{x}}}-\frac {(3 b c-2 a d) \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{a^{5/2}} \]

[Out]

-(-2*a*d+3*b*c)*arctanh((a+b/x)^(1/2)/a^(1/2))/a^(5/2)+(-2*a*d+3*b*c)/a^2/(a+b/x)^(1/2)+c*x/a/(a+b/x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {382, 79, 53, 65, 214} \begin {gather*} -\frac {(3 b c-2 a d) \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{a^{5/2}}+\frac {3 b c-2 a d}{a^2 \sqrt {a+\frac {b}{x}}}+\frac {c x}{a \sqrt {a+\frac {b}{x}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d/x)/(a + b/x)^(3/2),x]

[Out]

(3*b*c - 2*a*d)/(a^2*Sqrt[a + b/x]) + (c*x)/(a*Sqrt[a + b/x]) - ((3*b*c - 2*a*d)*ArcTanh[Sqrt[a + b/x]/Sqrt[a]
])/a^(5/2)

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 382

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Subst[Int[(a + b/x^n)^p*((c +
 d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {c+\frac {d}{x}}{\left (a+\frac {b}{x}\right )^{3/2}} \, dx &=-\text {Subst}\left (\int \frac {c+d x}{x^2 (a+b x)^{3/2}} \, dx,x,\frac {1}{x}\right )\\ &=\frac {c x}{a \sqrt {a+\frac {b}{x}}}-\frac {\left (-\frac {3 b c}{2}+a d\right ) \text {Subst}\left (\int \frac {1}{x (a+b x)^{3/2}} \, dx,x,\frac {1}{x}\right )}{a}\\ &=\frac {3 b c-2 a d}{a^2 \sqrt {a+\frac {b}{x}}}+\frac {c x}{a \sqrt {a+\frac {b}{x}}}+\frac {(3 b c-2 a d) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\frac {1}{x}\right )}{2 a^2}\\ &=\frac {3 b c-2 a d}{a^2 \sqrt {a+\frac {b}{x}}}+\frac {c x}{a \sqrt {a+\frac {b}{x}}}+\frac {(3 b c-2 a d) \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+\frac {b}{x}}\right )}{a^2 b}\\ &=\frac {3 b c-2 a d}{a^2 \sqrt {a+\frac {b}{x}}}+\frac {c x}{a \sqrt {a+\frac {b}{x}}}-\frac {(3 b c-2 a d) \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{a^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.14, size = 70, normalized size = 0.92 \begin {gather*} \frac {\sqrt {a+\frac {b}{x}} x (3 b c-2 a d+a c x)}{a^2 (b+a x)}+\frac {(-3 b c+2 a d) \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{a^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d/x)/(a + b/x)^(3/2),x]

[Out]

(Sqrt[a + b/x]*x*(3*b*c - 2*a*d + a*c*x))/(a^2*(b + a*x)) + ((-3*b*c + 2*a*d)*ArcTanh[Sqrt[a + b/x]/Sqrt[a]])/
a^(5/2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(386\) vs. \(2(66)=132\).
time = 0.06, size = 387, normalized size = 5.09

method result size
risch \(\frac {c \left (a x +b \right )}{a^{2} \sqrt {\frac {a x +b}{x}}}+\frac {\left (\frac {\ln \left (\frac {\frac {b}{2}+a x}{\sqrt {a}}+\sqrt {a \,x^{2}+b x}\right ) d}{a^{\frac {3}{2}}}-\frac {3 \ln \left (\frac {\frac {b}{2}+a x}{\sqrt {a}}+\sqrt {a \,x^{2}+b x}\right ) b c}{2 a^{\frac {5}{2}}}-\frac {2 \sqrt {a \left (x +\frac {b}{a}\right )^{2}-b \left (x +\frac {b}{a}\right )}\, d}{a^{2} \left (x +\frac {b}{a}\right )}+\frac {2 \sqrt {a \left (x +\frac {b}{a}\right )^{2}-b \left (x +\frac {b}{a}\right )}\, b c}{a^{3} \left (x +\frac {b}{a}\right )}\right ) \sqrt {x \left (a x +b \right )}}{x \sqrt {\frac {a x +b}{x}}}\) \(187\)
default \(\frac {\sqrt {\frac {a x +b}{x}}\, x \left (-4 \sqrt {x \left (a x +b \right )}\, a^{\frac {7}{2}} d \,x^{2}+6 \sqrt {x \left (a x +b \right )}\, a^{\frac {5}{2}} b c \,x^{2}+2 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) a^{3} b d \,x^{2}-3 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) a^{2} b^{2} c \,x^{2}+4 \left (x \left (a x +b \right )\right )^{\frac {3}{2}} a^{\frac {5}{2}} d -4 \left (x \left (a x +b \right )\right )^{\frac {3}{2}} a^{\frac {3}{2}} b c -8 \sqrt {x \left (a x +b \right )}\, a^{\frac {5}{2}} b d x +12 \sqrt {x \left (a x +b \right )}\, a^{\frac {3}{2}} b^{2} c x +4 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) a^{2} b^{2} d x -6 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) a \,b^{3} c x -4 \sqrt {x \left (a x +b \right )}\, a^{\frac {3}{2}} b^{2} d +6 \sqrt {x \left (a x +b \right )}\, \sqrt {a}\, b^{3} c +2 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) a \,b^{3} d -3 \ln \left (\frac {2 \sqrt {x \left (a x +b \right )}\, \sqrt {a}+2 a x +b}{2 \sqrt {a}}\right ) b^{4} c \right )}{2 a^{\frac {5}{2}} \sqrt {x \left (a x +b \right )}\, b \left (a x +b \right )^{2}}\) \(387\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d/x)/(a+1/x*b)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2*((a*x+b)/x)^(1/2)*x/a^(5/2)*(-4*(x*(a*x+b))^(1/2)*a^(7/2)*d*x^2+6*(x*(a*x+b))^(1/2)*a^(5/2)*b*c*x^2+2*ln(1
/2*(2*(x*(a*x+b))^(1/2)*a^(1/2)+2*a*x+b)/a^(1/2))*a^3*b*d*x^2-3*ln(1/2*(2*(x*(a*x+b))^(1/2)*a^(1/2)+2*a*x+b)/a
^(1/2))*a^2*b^2*c*x^2+4*(x*(a*x+b))^(3/2)*a^(5/2)*d-4*(x*(a*x+b))^(3/2)*a^(3/2)*b*c-8*(x*(a*x+b))^(1/2)*a^(5/2
)*b*d*x+12*(x*(a*x+b))^(1/2)*a^(3/2)*b^2*c*x+4*ln(1/2*(2*(x*(a*x+b))^(1/2)*a^(1/2)+2*a*x+b)/a^(1/2))*a^2*b^2*d
*x-6*ln(1/2*(2*(x*(a*x+b))^(1/2)*a^(1/2)+2*a*x+b)/a^(1/2))*a*b^3*c*x-4*(x*(a*x+b))^(1/2)*a^(3/2)*b^2*d+6*(x*(a
*x+b))^(1/2)*a^(1/2)*b^3*c+2*ln(1/2*(2*(x*(a*x+b))^(1/2)*a^(1/2)+2*a*x+b)/a^(1/2))*a*b^3*d-3*ln(1/2*(2*(x*(a*x
+b))^(1/2)*a^(1/2)+2*a*x+b)/a^(1/2))*b^4*c)/(x*(a*x+b))^(1/2)/b/(a*x+b)^2

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 144 vs. \(2 (66) = 132\).
time = 0.49, size = 144, normalized size = 1.89 \begin {gather*} \frac {1}{2} \, c {\left (\frac {2 \, {\left (3 \, {\left (a + \frac {b}{x}\right )} b - 2 \, a b\right )}}{{\left (a + \frac {b}{x}\right )}^{\frac {3}{2}} a^{2} - \sqrt {a + \frac {b}{x}} a^{3}} + \frac {3 \, b \log \left (\frac {\sqrt {a + \frac {b}{x}} - \sqrt {a}}{\sqrt {a + \frac {b}{x}} + \sqrt {a}}\right )}{a^{\frac {5}{2}}}\right )} - d {\left (\frac {\log \left (\frac {\sqrt {a + \frac {b}{x}} - \sqrt {a}}{\sqrt {a + \frac {b}{x}} + \sqrt {a}}\right )}{a^{\frac {3}{2}}} + \frac {2}{\sqrt {a + \frac {b}{x}} a}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d/x)/(a+b/x)^(3/2),x, algorithm="maxima")

[Out]

1/2*c*(2*(3*(a + b/x)*b - 2*a*b)/((a + b/x)^(3/2)*a^2 - sqrt(a + b/x)*a^3) + 3*b*log((sqrt(a + b/x) - sqrt(a))
/(sqrt(a + b/x) + sqrt(a)))/a^(5/2)) - d*(log((sqrt(a + b/x) - sqrt(a))/(sqrt(a + b/x) + sqrt(a)))/a^(3/2) + 2
/(sqrt(a + b/x)*a))

________________________________________________________________________________________

Fricas [A]
time = 2.16, size = 210, normalized size = 2.76 \begin {gather*} \left [-\frac {{\left (3 \, b^{2} c - 2 \, a b d + {\left (3 \, a b c - 2 \, a^{2} d\right )} x\right )} \sqrt {a} \log \left (2 \, a x + 2 \, \sqrt {a} x \sqrt {\frac {a x + b}{x}} + b\right ) - 2 \, {\left (a^{2} c x^{2} + {\left (3 \, a b c - 2 \, a^{2} d\right )} x\right )} \sqrt {\frac {a x + b}{x}}}{2 \, {\left (a^{4} x + a^{3} b\right )}}, \frac {{\left (3 \, b^{2} c - 2 \, a b d + {\left (3 \, a b c - 2 \, a^{2} d\right )} x\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {a x + b}{x}}}{a}\right ) + {\left (a^{2} c x^{2} + {\left (3 \, a b c - 2 \, a^{2} d\right )} x\right )} \sqrt {\frac {a x + b}{x}}}{a^{4} x + a^{3} b}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d/x)/(a+b/x)^(3/2),x, algorithm="fricas")

[Out]

[-1/2*((3*b^2*c - 2*a*b*d + (3*a*b*c - 2*a^2*d)*x)*sqrt(a)*log(2*a*x + 2*sqrt(a)*x*sqrt((a*x + b)/x) + b) - 2*
(a^2*c*x^2 + (3*a*b*c - 2*a^2*d)*x)*sqrt((a*x + b)/x))/(a^4*x + a^3*b), ((3*b^2*c - 2*a*b*d + (3*a*b*c - 2*a^2
*d)*x)*sqrt(-a)*arctan(sqrt(-a)*sqrt((a*x + b)/x)/a) + (a^2*c*x^2 + (3*a*b*c - 2*a^2*d)*x)*sqrt((a*x + b)/x))/
(a^4*x + a^3*b)]

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 224 vs. \(2 (65) = 130\).
time = 20.95, size = 224, normalized size = 2.95 \begin {gather*} c \left (\frac {x^{\frac {3}{2}}}{a \sqrt {b} \sqrt {\frac {a x}{b} + 1}} + \frac {3 \sqrt {b} \sqrt {x}}{a^{2} \sqrt {\frac {a x}{b} + 1}} - \frac {3 b \operatorname {asinh}{\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b}} \right )}}{a^{\frac {5}{2}}}\right ) + d \left (- \frac {2 a^{3} x \sqrt {1 + \frac {b}{a x}}}{a^{\frac {9}{2}} x + a^{\frac {7}{2}} b} - \frac {a^{3} x \log {\left (\frac {b}{a x} \right )}}{a^{\frac {9}{2}} x + a^{\frac {7}{2}} b} + \frac {2 a^{3} x \log {\left (\sqrt {1 + \frac {b}{a x}} + 1 \right )}}{a^{\frac {9}{2}} x + a^{\frac {7}{2}} b} - \frac {a^{2} b \log {\left (\frac {b}{a x} \right )}}{a^{\frac {9}{2}} x + a^{\frac {7}{2}} b} + \frac {2 a^{2} b \log {\left (\sqrt {1 + \frac {b}{a x}} + 1 \right )}}{a^{\frac {9}{2}} x + a^{\frac {7}{2}} b}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d/x)/(a+b/x)**(3/2),x)

[Out]

c*(x**(3/2)/(a*sqrt(b)*sqrt(a*x/b + 1)) + 3*sqrt(b)*sqrt(x)/(a**2*sqrt(a*x/b + 1)) - 3*b*asinh(sqrt(a)*sqrt(x)
/sqrt(b))/a**(5/2)) + d*(-2*a**3*x*sqrt(1 + b/(a*x))/(a**(9/2)*x + a**(7/2)*b) - a**3*x*log(b/(a*x))/(a**(9/2)
*x + a**(7/2)*b) + 2*a**3*x*log(sqrt(1 + b/(a*x)) + 1)/(a**(9/2)*x + a**(7/2)*b) - a**2*b*log(b/(a*x))/(a**(9/
2)*x + a**(7/2)*b) + 2*a**2*b*log(sqrt(1 + b/(a*x)) + 1)/(a**(9/2)*x + a**(7/2)*b))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 148 vs. \(2 (66) = 132\).
time = 1.60, size = 148, normalized size = 1.95 \begin {gather*} -\frac {{\left (3 \, b c \log \left ({\left | b \right |}\right ) - 2 \, a d \log \left ({\left | b \right |}\right ) + 4 \, b c - 4 \, a d\right )} \mathrm {sgn}\left (x\right )}{2 \, a^{\frac {5}{2}}} + \frac {\sqrt {a x^{2} + b x} c}{a^{2} \mathrm {sgn}\left (x\right )} + \frac {{\left (3 \, b c - 2 \, a d\right )} \log \left ({\left | -2 \, {\left (\sqrt {a} x - \sqrt {a x^{2} + b x}\right )} \sqrt {a} - b \right |}\right )}{2 \, a^{\frac {5}{2}} \mathrm {sgn}\left (x\right )} + \frac {2 \, {\left (b^{2} c - a b d\right )}}{{\left ({\left (\sqrt {a} x - \sqrt {a x^{2} + b x}\right )} a + \sqrt {a} b\right )} a^{2} \mathrm {sgn}\left (x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d/x)/(a+b/x)^(3/2),x, algorithm="giac")

[Out]

-1/2*(3*b*c*log(abs(b)) - 2*a*d*log(abs(b)) + 4*b*c - 4*a*d)*sgn(x)/a^(5/2) + sqrt(a*x^2 + b*x)*c/(a^2*sgn(x))
 + 1/2*(3*b*c - 2*a*d)*log(abs(-2*(sqrt(a)*x - sqrt(a*x^2 + b*x))*sqrt(a) - b))/(a^(5/2)*sgn(x)) + 2*(b^2*c -
a*b*d)/(((sqrt(a)*x - sqrt(a*x^2 + b*x))*a + sqrt(a)*b)*a^2*sgn(x))

________________________________________________________________________________________

Mupad [B]
time = 2.44, size = 71, normalized size = 0.93 \begin {gather*} \frac {2\,d\,\mathrm {atanh}\left (\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {a}}\right )}{a^{3/2}}-\frac {2\,d}{a\,\sqrt {a+\frac {b}{x}}}+\frac {2\,c\,x\,{\left (\frac {a\,x}{b}+1\right )}^{3/2}\,{{}}_2{\mathrm {F}}_1\left (\frac {3}{2},\frac {5}{2};\ \frac {7}{2};\ -\frac {a\,x}{b}\right )}{5\,{\left (a+\frac {b}{x}\right )}^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d/x)/(a + b/x)^(3/2),x)

[Out]

(2*d*atanh((a + b/x)^(1/2)/a^(1/2)))/a^(3/2) - (2*d)/(a*(a + b/x)^(1/2)) + (2*c*x*((a*x)/b + 1)^(3/2)*hypergeo
m([3/2, 5/2], 7/2, -(a*x)/b))/(5*(a + b/x)^(3/2))

________________________________________________________________________________________